

Model-assisted Analysis and Design of Electrochemical Processes

Energy Systems Initiative Fall Seminar, Carnegie Mellon University, online

Ulrike Krewer and Team | October 17, 2024

Content

1. [Electrochemical Processes for Energy and Feedstock Transition](#page-1-0)

2. [Reactions at Electrode Surfaces](#page-17-0)

3. [Interplay of Reaction and Transport](#page-23-0)

4. [Panta Rhei - When Electrodes Degrade](#page-27-0)

Content

1. [Electrochemical Processes for Energy and Feedstock Transition](#page-1-0)

2. [Reactions at Electrode Surfaces](#page-17-0)

3. [Interplay of Reaction and Transport](#page-23-0)

4. [Panta Rhei - When Electrodes Degrade](#page-27-0)

Challenge: Fluctuation of Renewable Energies

time

- **Energy supply and demand are fluctuating.**
- Efficient and dynamic energy storages needed.
- Electrochemical storages (batteries) cover short and mid term range;
- Chemical storages (fuel) cover long term range.
- Option: Power-to-chemicals!

Electrochemical (Energy) Processes - Some Basics

Galvanic cell

[Ballard]

- Chemicals/fuels \rightarrow electricity (+ chemicals)
- Example: ${\sf H_2}$ fuel cell
- + Continuous & dynamic operation

Electrolyser

[Enertrag]

- Electricity \rightarrow fuel (e.g. H₂), chemicals
- + Continuous & dynamic operation
- Reverse process to fuel cell

Batteries, redox flow cells

- Chemical energy \leftrightarrow electricity
- + Reversible reaction
- o Not continuous, but highly dynamic

Typical Electrochemical Cell Designs

Cells with separator between neg. and pos. electrode typical for fuel cells, electrolysis, batteries

Cells with reactant and electrolyte flow between neg. and pos. electrode: typical for electrosynthesis

Direct

How to Defossilise Society with Electrochemical Technologies

electrification (incl. battery) cheapest: building heating, transport, low T industrial processes **Electrosynthesis**

of H_2 , E-fuels, chemicals indispensible: feedstocks, aviation/shipping, ...

7/33 October 17, 2024 Krewer: Analysis & Design of Electrochem. Processes Final energy consumption (E.)
(DECD (2014) incl. teedstrocks)

Electrosynthesis of Chemicals and Fuels

- **Electrochemistry offers myriads of options to electrify and defossilise chemical processes**
- Besides H₂ and CO₂ valorisation, also bulk and fine chemicals can be electrochemically produced!

[Na et al., Nat. Comm.'19]
9/33 October 17, 2024

9/33 October 17, 2024 Krewer: Analysis & Design of Electrochem. Processes Institute for Applied Materials - Electrochemical Technologies

Debottlenecking for Successful Electrolysis Technologies

- **Roadblocks to overcome: cost competitive, (energy) efficiency, available technical scale reactors/cells,** robustness
- Wide-spread application requires prior quantitative understanding and assessment of technologies!

German Cluster4Future: Electrifying Technical Organic Synthesis

- **First and largest platform to transfer electroorganic** synthesis from lab to industry!
- Goal of cluster:
	- Enable the chemical industry to electrify
	- Replace chemical by electrochemical processes for fine chemicals production!
	- Establish engineering tools and models in the field!
- Huge industry interest

22 projects, > 15 industry partners, 9 years! Lead: S. Waldvogel, U. Krewer

- **Electroorganic processes are** not so trivial to embed in chemical reaction network.
- **Downstream processes required** with product separation from electrolyte.
- \blacksquare Replacing chemical by electrochemical synthesis processes requires holistic analysis and design!
- So far only little system-level research!
- Attractive playground for process systems engineering!
	- e.g. superstructure optimisation

Debottlenecking also needed for Li-Ion & Next-Generation Batteries

LIB: Li-ion; ASSB: All Solid State; Q: Quasi solid state; LSB: Li-S; MSB: Mg-S; DIB: dual ion

[Betz et al., Adv. Energy Mat. 2019, 9]

13/33 October 17, 2024 Krewer: Analysis & Design of Electrochem. Processes Institute for Applied Materials - Electrochemical Technologies

Modeling for Understanding Electrochemical Processes

- Number and state of electrochemical models far behind that for chemical processes.
- CFD and molecular modeling widespread!
- Kinetic modeling rare! Only few reliable kinetics!

Missing brick to predict performance!

Reaction Kinetic Modeling as Key to Understand & Improve Electrodes

Macrokinetics: reveal transport impact

Kinetic Model Equations and Parameterisation Options

Kinetic model formulation: $A \to A^{\ddagger} \to A^+ + e^-$

Electrochemical rate equation (chemical steps: $\eta = 0$):

$$
r = k \exp\left(-\frac{\Delta G^{0,\ddagger}}{RT}\right) c_A(1-\theta) \exp\left(\frac{\alpha F\eta}{RT}\right)
$$

- Energy may depend on surface coverage: $\Delta G^{0,\ddagger} = f(\theta)$
- Usually only one e⁻ transferable per step.
- Suggestion of candidate for multistep mechanism using literature, experiments, or theory (DFT/MD).

Parameter identification strategies (e.g. *k*, ∆*G* ‡ (θ))

- Option 1: estimate by reproducing experiments; uses real electrodes
- Option 2: from DFT/MD; only for ideal surfaces; limited accurracy

Option 2: Identification from Dynamic vs. Steady State Experiment

[Krewer, Vidakovic-Koch, Rihko-Struckmann, ChemPhysChem 2012; Krewer, Kamat, Sundmacher, JEAC 2007; Krewer, Röder, Harinath, Braatz, Bedürftig, Findeisen, JES 2018]

Identification from steady state experiments?

- At steady state, current *I* correlates with reaction rates *rⁱ* :
	- $I = \sum_i z_i$ *Fr*_{*i*} with *z*_{*i*}: no. of e⁻ in *r*_{*i*}
- Separate analysis of single processes (*rⁱ* , transport) severely hampered;
- Tafel slope analysis error-prone or inconclusive (see right: CO2R).

Dynamic analysis for model/parameter identification!

- **EIS: sinus. input: CV: ramp: chronoamp./potentiometry: step**
- Fast and slow processes react with different response times.
- Models contain dynamics via charge (*Q*) and species (*n*) balances $\frac{dQ}{dt} = C_d$ I $\frac{dE}{dt} = I - \sum_i z_i$ Fr $\frac{d\eta_j}{dt} = \dot{\eta}_j + \sum_j \nu_{ij} r_j$
- **Dynamic model allows separation and analysis of single processes.**

Content

1. [Electrochemical Processes for Energy and Feedstock Transition](#page-1-0)

- **2. [Reactions at Electrode Surfaces](#page-17-0)**
- **3. [Interplay of Reaction and Transport](#page-23-0)**
- **4. [Panta Rhei When Electrodes Degrade](#page-27-0)**

[Geppert, Röse, (...), Krewer, J. Am. Chem. Soc. 2022]

H2O Electrolysis: Understanding Oxygen Evolution

[Escalera-Lopez (Krewer) et al. ACS Catal. 2021]

[Schmidt et al 2020 J. Electrochem. Soc. 167 114511]

- Oxygen evolution (OER; 2 $\text{H}_{2}\text{O}{\rightarrow}\text{O}_{2} +$ 4 H $^{+}$ + 4 e $^{-}$) as largest loss process in PEM water electrolysis.
- How to extract information from experimental cyclovoltammograms (CV; current response to potential ramps) of catalyst particles?
- Characteristic peaks for $IrO₂$ and RuO₂ differ
- **Mixtures show peaks of both metals.**
- Goal: reproduce with kinetic model and evaluate information!

First scar | ast scan

 $RuO₂$

 $\,$ mA cm $^{-2}$

 $\text{Ir}_{0.2}\text{Ru}_{0.8}\text{O}_2$

 $Ir_{0.5}Ru_{0.5}O_2$

 $Ir_{0.8}Ru_{0.2}O_2$

Microkinetic Model for CV Simulation of O² **Evolution**

OER mechanism

- **Mechanism** comprises seven intermediates
- 4 electrochemical, 3 chemical (sorption)
- Single reaction rates enter dynamic species and charge balance
- **Parameter to be** identified from CV: Energies ∆*G*, site density ρ

H2O Electrolysis: O² Kinetic Identification for IrO²

[Geppert, Röse, Pauer, Krewer, ChemElectroChem, 2022]

- Excellent reproduction of I_{CO_2} CV with kinetic model.
- Identified energy parameters of steps are close to DFT ones.
- Accumulating species show limitation at 1.6V: $H₂O$ sorption (*O), O₂ desorption (*OO), OOH* deprotonation

H2O Electrolysis: Kinetic Insights for Binary Catalysts

[Geppert, Röse, Pauer, Krewer, ChemElectroChem, 2022]

- Model reproduces CVs and identifies energies for different Ir:Ru mixtures.
- Individual sites of binary catalyst experience performance enhancement (lower energies).
- Model identifies and quantifies deviation from nominal surface composition: Ir↑ (Ru-dissolution).

Electroorganic Synthesis: Can We Identify Mechanisms & Kinetics?

Exp.: slight H_2 evolution; CV depends on ketone conc. and scan rate

Sim.: Langmuir-Hinshelwood mech. more likely than Elay-Rideal (no H-ads)

Content

- **1. [Electrochemical Processes for Energy and Feedstock Transition](#page-1-0)**
- **2. [Reactions at Electrode Surfaces](#page-17-0)**
- **3. [Interplay of Reaction and Transport](#page-23-0)**
- **4. [Panta Rhei When Electrodes Degrade](#page-27-0)**

Cl² Production: What Limits Performance in O² **Depletion Cathode (ODC)?**

- $Cl₂$ may be efficiently produced with $O₂$ counter electrode
- Partly ag. NaOH-flooded Ag gas diffusion electrode (GDE), reactants O_2 and H_2O fed from opposite sides.
- Limitation by slow transport of O_2 frequently assumed.
- How can we identify the limitation? Use macrokinetic model! 1-d model: diffusion, convection, g/l phase change, reaction

ODC: Dynamic Voltage Step Response reveals Transport Limitation.

HER: $2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$, diffusion, migration

- (Partial) current density and plateau strongly influenced by dynamic operation (scan rate) for 50 rpm.
- Performance limited by $CO₂$ transport and carbonation! $CO₂ + 2OH^- \longleftrightarrow CO₃²⁻ + H₂O$
- Side reactions and transport impact widespread! $f(E, I)$!

27/33 October 17, 2024 Krewer: Analysis & Design of Electrochem. Processes Institute for Applied Materials - Electrochemical Technologies

What Limits Processes in CO² **Reduction on Flat Ag?**

 300 mVs

200 mVs

 00 mVs

 -0.8

 -06

 -1

[Dorner, Röse, Krewer, ChemElectroChem, 2023]

Ag rotating disc electrode, $CO₂$ saturated 0.1M KHCO₃

Content

- **1. [Electrochemical Processes for Energy and Feedstock Transition](#page-1-0)**
- **2. [Reactions at Electrode Surfaces](#page-17-0)**
- **3. [Interplay of Reaction and Transport](#page-23-0)**
- **4. [Panta Rhei When Electrodes Degrade](#page-27-0)**

H2O Electrolysis: Tracking Catalyst Degradation

[Geppert, Röse, (...), Krewer, J. Am. Chem. Soc. 2022]

- \blacksquare All O₂ evolution catalysts: Long-term operation leads to activity losses.
- \blacksquare State estimation methods needed for optimal operation!
- Kinetic model can capture features.
- Model reveals aging-induced increase in activation energies.

Estimating (Degradation) State for Li-ion Batteries

[Heinrich, Wolff et al. Batteries & Supercaps, 2019; Krewer et al. J. Electrochem. Soc. 2018; Witt, Roeder, Krewer, Batteries and Supercaps, 2022]

- Remaining capacity of batteries decreases during operation
- **•** Mechanical issues complement chemical degradation; most influential: growth of passivation layer (solid-electrolyte interphase, SEI)
- Dynamic measurements contain information on degradation processes!
- Dynamically parameterised models reveal electrode changes operando!

 $\overline{\mathcal{K}}_{\mathbf{R}}$ b) Φ A. SEI IFA E $\rm{m}\Omega~\rm{m}^2$ C vele $0 -Cycle 50$ $-Cycle 100$ 0.4 0.2 $\overline{}$ \overline{M}^* \cap Ω 0.5 1.5 Z'_a / m Ω m² 180 160 naSm
a $\frac{1}{40}$ 40 $\frac{11}{50}$ 120 20 ö

> 50 100

Separator

Anode

50 100

Cathode

50 100

Hot New Topic: Safety Models to Prevent Thermal Runaway of Batteries

Thermal runaway model

- Self-heating due to SEI decomposition.
- Complex interaction of negative and positive reaction heats.
- Sensitive to ageing & water!

Model-assisted Analysis and Design of Electrochem. Processes

Electrochemical processes

- $...$ needed and versatile: energy storage, ${\sf H_2}$ production, CO₂ valorisation, and a myriad of chemicals!
- Only few synthesis processes established so far! Quantitative R&D and models needed on all levels!

Kinetic models give essential insights for process optimisation!

- **Reaction mechanism identification tricky; dynamics allows kinetics identification & parameterisation!**
- **Electrodes frequently suffer from complex interaction of reaction with transport and side reactions!**
- Identified kinetic models enable estimating degradation state.

The upcoming age of electrochemical processes urgently needs (system) engineers!

Acknowledgements

Thanks to all contributors (J.D. Grunwaldt, S. Cherevko & group, T. Turek, W. Schuhmann, N. Shida, M. Atobe & their groups, my group) and funding agencies (DFG, BMBF, BMWI)!

Thank you for your attention!